Composante
ENSEIRB-MATMECA
Code interne
EI9IS318
Description
Fondamentaux de l'apprentissage automatique : apprentissage supervisé/non-supervisé, classification/régression, optimisation, surapprentissage, généralisation, etc.
Régression linéaire et modélisation probabiliste (maximum de vraisemblance, maximum a posteriori)
Classifieurs linéaires : régression logistique, descente de gradient, classifieur bayésien
SVM et méthodes à noyaux
Arbres de décision et combinaison de modèles (bagging, boosting, etc).
Apprentissage non-supervisé (clustering) et réduction de dimension
Traitement de séries temporelles, chaînes de Markov
Introduction au traitement du langage naturel (NLP)
Modalités de contrôle des connaissances
Évaluation initiale / Session principale - Épreuves
Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Nombre d'épreuves | Coefficient de l'épreuve | Note éliminatoire de l'épreuve | Remarques |
---|---|---|---|---|---|---|
Contrôle Continu Intégral | Contrôle Continu | 1 |
Seconde chance / Session de rattrapage - Épreuves
Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Nombre d'épreuves | Coefficient de l'épreuve | Note éliminatoire de l'épreuve | Remarques |
---|---|---|---|---|---|---|
Projet | Rapport | 0.5 |